Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.199
Filtrar
1.
Neurosci Lett ; 827: 137740, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521402

RESUMO

New psychoactive substances (NPS) are typically synthesized in clandestine laboratories in an attempt to chemically modify already federally regulated drugs in an effort to circumvent the law. Drugs derived from a phenethylamine pharmacophore, such as 4-chloroamphetamine and 3,4-methylenedioxymethamphetamine (MDMA), reliably induce thermogenesis and serotonergic deficits in the striatum and hippocampus of rodents. 4-methylamphetamine (4-MA), a relative newcomer to the NPS scene, was originally investigated in the mid-1900 s as a potential anorexigenic agent. With its phenethylamine pharmacophore, 4-MA was hypothesized to produce similar toxicological alterations as its chemical analogs. In the present study, three doses (1.0, 2.5, and 5.0 mg/kg, ip.) of 4-MA were administered to rats twice daily for two days. Core temperature data were calculated and analyzed as temperature area under the curve (TAUC). On the second day of dosing, a hypothermic response to 4-MA (2.5 and 5.0 mg/kg) was noted between 0.5 and 2.0 h post-treatment. Only the highest dose of 4-MA decreased body weight on the second day of treatment and maintained this reduction in weight for seven days after treatment ceased. None of the doses of 4-MA evaluated significantly altered serotonin levels in the hippocampus or striatum seven days after final treatment. The present findings demonstrate that the 4-methyl substitution to amphetamine generates a pharmacological and toxicological profile that differs from other similar phenethylamine analogs.


Assuntos
Anfetaminas , Drogas Desenhadas , Metanfetamina , N-Metil-3,4-Metilenodioxianfetamina , Ratos , Animais , Metanfetamina/farmacologia , Serotonina/farmacologia , Drogas Desenhadas/farmacologia , Temperatura , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Anfetamina/farmacologia , Hipocampo , Serotoninérgicos/farmacologia , Serotoninérgicos/análise
2.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514191

RESUMO

Obsessive-compulsive disorder (OCD) is a debilitating psychiatric disorder characterized by intrusive obsessive thoughts and compulsive behaviors. Multiple studies have shown the association of polymorphisms in the SLC1A1 gene with OCD. The most common of these OCD-associated polymorphisms increases the expression of the encoded protein, excitatory amino acid transporter 3 (EAAT3), a neuronal glutamate transporter. Previous work has shown that increased EAAT3 expression results in OCD-relevant behavioral phenotypes in rodent models. In this study, we created a novel mouse model with targeted, reversible overexpression of Slc1a1 in forebrain neurons. The mice do not have a baseline difference in repetitive behavior but show increased hyperlocomotion following a low dose of amphetamine (3 mg/kg) and increased stereotypy following a high dose of amphetamine (8 mg/kg). We next characterized the effect of amphetamine on striatal cFos response and found that amphetamine increased cFos throughout the striatum in both control and Slc1a1-overexpressing (OE) mice, but Slc1a1-OE mice had increased cFos expression in the ventral striatum relative to controls. We used an unbiased machine classifier to robustly characterize the behavioral response to different doses of amphetamine and found a unique response to amphetamine in Slc1a1-OE mice, relative to controls. Lastly, we found that the differences in striatal cFos expression in Slc1a1-OE mice were driven by cFos expression specifically in D1 neurons, as Slc1a1-OE mice had increased cFos in D1 ventral medial striatal neurons, implicating this region in the exaggerated behavioral response to amphetamine in Slc1a1-OE mice.


Assuntos
Anfetamina , Transtorno Obsessivo-Compulsivo , Humanos , Camundongos , Animais , Anfetamina/farmacologia , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Transtorno Obsessivo-Compulsivo/induzido quimicamente , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Corpo Estriado/metabolismo , Modelos Animais de Doenças
3.
Brain Behav Immun ; 118: 236-251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431238

RESUMO

Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Cloridrato de Raloxifeno , Humanos , Adulto Jovem , Ratos , Feminino , Masculino , Animais , Adulto , Cloridrato de Raloxifeno/farmacologia , Dopamina/metabolismo , Receptores de Estrogênio , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Anfetamina/farmacologia , RNA Mensageiro , Comportamento Animal/fisiologia , Poli I-C/farmacologia , Modelos Animais de Doenças , Mamíferos/metabolismo
4.
Adv Pharmacol ; 99: 1-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467478

RESUMO

The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.


Assuntos
Anfetamina , Dopamina , Humanos , Anfetamina/farmacologia , Transporte Biológico , Dopamina/metabolismo , Neurotransmissores , Processamento de Proteína Pós-Traducional
5.
Adv Pharmacol ; 99: 35-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467486

RESUMO

The dopamine transporter (DAT) is a key site of action for cocaine and amphetamines. Dysfunctional DAT is associated with aberrant synaptic dopamine transmission and enhanced drug-seeking and taking behavior. Studies in cultured cells and ex vivo suggest that DAT function is sensitive to membrane cholesterol content. Although it is largely unknown whether psychostimulants alter cholesterol metabolism in the brain, emerging evidence indicates that peripheral cholesterol metabolism is altered in patients with psychostimulant use disorder and circulating cholesterol levels are associated with vulnerability to relapse. Cholesterol interacts with sphingolipids forming lipid raft microdomains on the membrane. These cholesterol-rich lipid raft microdomains serve to recruit and assemble other lipids and proteins to initiate signal transduction. There are two spatially and functionally distinct populations of the DAT segregated by cholesterol-rich lipid raft microdomains and cholesterol-scarce non-raft microdomains on the plasma membrane. These two DAT populations are differentially regulated by DAT blockers (e.g. cocaine), substrates (e.g. amphetamine), and protein kinase C providing distinct cholesterol-dependent modulation of dopamine uptake and efflux. In this chapter, we summarize the impact of depletion and addition of membrane cholesterol on DAT conformational changes between the outward-facing and the inward-facing states, lipid raft-associated DAT localization, basal and induced DAT internalization, and DAT function. In particular, we focus on how the interactions of the DAT with cocaine and amphetamine are influenced by membrane cholesterol. Lastly, we discuss the therapeutic potential of cholesterol-modifying drugs as a new avenue to normalize DAT function and dopamine transmission in patients with psychostimulant use disorder.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Humanos , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Dopamina/metabolismo , Anfetamina/farmacologia , Cocaína/farmacologia , Colesterol/química , Colesterol/metabolismo
6.
Sci Rep ; 14(1): 3596, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351286

RESUMO

Abuse of amphetamine-type stimulants is linked to cardiovascular adverse effects like arrhythmias, accelerated atherosclerosis, acute coronary syndromes and sudden cardiac death. Excessive catecholamine release following amphetamine use causes vasoconstriction and vasospasms, over time leading to hypertension, endothelial dysfunction or even cardiotoxicity. However, immediate vascular pathomechanisms related to amphetamine exposure, especially endothelial function, remain incompletely understood and were analyzed in this study. Pharmaco-pathological effects of acute d-amphetamine-sulfate (DAM) were investigated ex vivo using contraction-force measurements of rat carotid artery rings and in vitro using label-free, real-time electrochemical impedance spectroscopy (EIS) on endothelial and smooth muscle cells. Specific receptor and target blocking was used to identify molecular targets and to characterize intracellular signaling. DAM induced vasodilation represented by 29.3±2.5% decrease in vascular tone (p<0.001) involving vascular endothelial growth factor receptor (VEGF-R) and protease activated receptor 1 (PAR-1). EIS revealed that DAM induces endothelial barrier disruption (-75.9±1.1% of initial cellular impedance, p<0.001) also involving VEGF-R and PAR-1. Further, in response to DAM, Rho-associated protein kinase (ROCK) mediated reversible contraction of actin cytoskeleton resulting in endothelial barrier disruption. Dephosphorylation of Serine1177 (-50.8±3.7%, p<0.001) and Threonine495 (-44.8±6.5%, p=0.0103) of the endothelial NO synthase (eNOS) were also observed. Blocking of VEGF-R and PAR-1 restored baseline eNOS Threonine495 phosphorylation. DAM induced vasodilation, enhanced vascular permeability and actin cytoskeleton contraction and induced eNOS hypophosphorylation involving VEGF-R, PAR-1 and ROCK. These results may contribute to a better understanding of severe adverse cardiovascular effects in amphetamine abuse.


Assuntos
Receptor PAR-1 , Doenças Vasculares , Ratos , Animais , Receptor PAR-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anfetamina/farmacologia , Permeabilidade Capilar , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Quinases Associadas a rho/metabolismo , Doenças Vasculares/metabolismo , Endotélio Vascular/metabolismo , Citoesqueleto de Actina/metabolismo , Células Cultivadas
7.
Aging Cell ; 23(4): e14087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332648

RESUMO

Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at ß-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Anfetamina/farmacologia , Norepinefrina/farmacologia , Ratos Sprague-Dawley , Espinhas Dendríticas/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Córtex Cerebral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Ratos Endogâmicos F344 , Ácido Glutâmico , Cognição
8.
Pharmacol Biochem Behav ; 238: 173735, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373600

RESUMO

RATIONALE: Fentanyl remains the primary cause of fatal overdoses, and its co-use with methamphetamine (METH) is a growing concern. We previously demonstrated that racemic METH can either enhance or mitigate opioid-induced respiratory depression (OIRD) dependent upon whether a low or high dose is administered. The optical isomers of METH, dextromethamphetamine (d-METH) and levomethamphetamine (l-METH), differ substantially in their selectivity and potency to activate various monoamine (MA) receptors, and these pharmacological differences may underlie the bidirectional effects of the racemate. Since it is unknown which of METH's MA receptor mechanisms mediate these respiratory effects, examination of METH's pharmacologically distinct enantiomers may provide insight into treatment targets for OIRD. METHODS: The two optical isomers of METH, d-METH and l-METH, were tested in adult male mice to determine their effects on basal and fentanyl-depressed respiratory frequency, tidal volume, and minute ventilation (MVb; i.e., respiratory frequency x tidal volume) using whole-body plethysmography. RESULTS: When tested at dose ranges of 1.0-10 mg/kg, d-METH elevated MVb and l-METH decreased basal MVb. A dose of 30 mg/kg l-METH increased basal MVb. Under fentanyl-depressed conditions, the bidirectional effects of racemic METH were observed with d-METH treatment while l-METH significantly exacerbated OIRD at 1.0 and 3.0 mg/kg. CONCLUSIONS: d-METH and l-METH differentially contribute to the bidirectional respiratory modulation observed by the racemate, with d-METH exhibiting predominantly stimulatory effects and l-METH exhibiting primarily depressant effects depending on dose.


Assuntos
Fentanila , Metanfetamina , Ratos , Camundongos , Animais , Masculino , Fentanila/farmacologia , Ratos Sprague-Dawley , Metanfetamina/farmacologia , Anfetamina/farmacologia , Respiração , Analgésicos Opioides/farmacologia
9.
Exp Neurol ; 374: 114718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336285

RESUMO

Executive function, including working memory, attention and inhibitory control, is crucial for decision making, thinking and planning. Lisdexamfetamine, the prodrug of d-amphetamine, has been approved for treating attention-deficit hyperactivity disorder and binge eating disorder, but whether it improves executive function under non-disease condition, as well as the underlying pharmacokinetic and neurochemical properties, remains unclear. Here, using trial unique non-matching to location task and five-choice serial reaction time task of rats, we found lisdexamfetamine (p.o) enhanced spatial working memory and sustained attention under various cognitive load conditions, while d-amphetamine (i.p) only improved these cognitive performances under certain high cognitive load condition. Additionally, lisdexamfetamine evoked less impulsivity than d-amphetamine, indicating lower adverse effect on inhibitory control. In vivo pharmacokinetics showed lisdexamfetamine produced a relative stable and lasting release of amphetamine base both in plasma and in brain tissue, whereas d-amphetamine injection elicited rapid increase and dramatical decrease in amphetamine base levels. Microdialysis revealed lisdexamfetamine caused lasting release of dopamine within the medial prefrontal cortex (mPFC), whereas d-amphetamine produced rapid increase followed by decline to dopamine level. Moreover, lisdexamfetamine elicited more obvious efflux of noradrenaline than that of d-amphetamine. The distinct neurochemical profiles may be partly attributed to the different action of two drugs to membranous catecholamine transporters level within mPFC, detecting by Western Blotting. Taken together, due to its certain pharmacokinetic and catecholamine releasing profiles, lisdexamfetamine produced better pharmacological action to improving executive function. Our finding provided valuable evidence on the ideal pharmacokinetic and neurochemical characteristics of amphetamine-type psychostimulants in cognition enhancement.


Assuntos
Estimulantes do Sistema Nervoso Central , Dimesilato de Lisdexanfetamina , Ratos , Animais , Dimesilato de Lisdexanfetamina/farmacologia , Função Executiva , Dopamina , Estimulantes do Sistema Nervoso Central/efeitos adversos , Dextroanfetamina/efeitos adversos , Dextroanfetamina/farmacocinética , Anfetamina/farmacologia , Catecolaminas , Cognição
10.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38168850

RESUMO

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Eletroencefalografia , Camundongos Endogâmicos C57BL , Motivação , Anfetamina/farmacologia , Humanos , Animais , Masculino , Eletroencefalografia/efeitos dos fármacos , Adulto , Adulto Jovem , Método Duplo-Cego , Motivação/efeitos dos fármacos , Motivação/fisiologia , Feminino , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Camundongos , Ritmo alfa/efeitos dos fármacos , Ritmo alfa/fisiologia
11.
Cogn Affect Behav Neurosci ; 24(2): 351-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253774

RESUMO

The rapid serial visual presentation (RSVP) task and continuous performance tasks (CPT) are used to assess attentional impairments in patients with psychiatric and neurological conditions. This study developed a novel touchscreen task for rats based on the structure of a human RSVP task and used pharmacological manipulations to investigate their effects on different performance measures. Normal animals were trained to respond to a target image and withhold responding to distractor images presented within a continuous sequence. In a second version of the task, a false-alarm image was included, so performance could be assessed relative to two types of nontarget distractors. The effects of acute administration of stimulant and nonstimulant treatments for ADHD (amphetamine and atomoxetine) were tested in both tasks. Methylphenidate, ketamine, and nicotine were tested in the first task only. Amphetamine made animals more impulsive and decreased overall accuracy but increased accuracy when the target was presented early in the image sequence. Atomoxetine improved accuracy overall with a specific reduction in false-alarm responses and a shift in the attentional curve reflecting improved accuracy for targets later in the image sequence. However, atomoxetine also slowed responding and increased omissions. Ketamine, nicotine, and methylphenidate had no specific effects at the doses tested. These results suggest that stimulant versus nonstimulant treatments have different effects on attention and impulsive behaviour in this rat version of an RSVP task. These results also suggest that RSVP-like tasks have the potential to be used to study attention in rodents.


Assuntos
Anfetamina , Cloridrato de Atomoxetina , Atenção , Estimulantes do Sistema Nervoso Central , Ketamina , Metilfenidato , Nicotina , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/administração & dosagem , Atenção/efeitos dos fármacos , Atenção/fisiologia , Masculino , Ratos , Metilfenidato/farmacologia , Metilfenidato/administração & dosagem , Nicotina/farmacologia , Nicotina/administração & dosagem , Anfetamina/farmacologia , Anfetamina/administração & dosagem , Ketamina/farmacologia , Ketamina/administração & dosagem , Estimulação Luminosa/métodos , Inibidores da Captação Adrenérgica/farmacologia , Inibidores da Captação Adrenérgica/administração & dosagem , Aprendizagem Seriada/efeitos dos fármacos , Aprendizagem Seriada/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Percepção Visual/efeitos dos fármacos , Percepção Visual/fisiologia , Ratos Sprague-Dawley
12.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38174899

RESUMO

BACKGROUND: Rats emit 50-kHz ultrasonic vocalizations (USVs) in response to nonpharmacological and pharmacological stimuli, with addictive psychostimulants being the most effective drugs that elicit calling behavior in rats. Earlier investigations found that dopamine D1-like and D2-like receptors modulate the emission of 50-kHz USVs stimulated in rats by the acute administration of addictive psychostimulants. Conversely, information is lacking on how dopamine D1-like and D2-like receptors modulate calling behavior in rats that are repeatedly treated with addictive psychostimulants. METHODS: We evaluated the emission of 50-kHz USVs in rats repeatedly treated (×5 on alternate days) with amphetamine (1 mg/kg, i.p.) either alone or together with (1) SCH 23390 (0.1-1 mg/kg, s.c.), a dopamine D1 receptor antagonist; (2) raclopride (0.3-1 mg/kg, s.c.), a selective dopamine D2 receptor antagonist; or (3) a combination of SCH 23390 and raclopride (0.1 + 0.3 mg/kg, s.c.). Calling behavior of rats was recorded following pharmacological treatment, as well as in response to the presentation of amphetamine-paired cues and to amphetamine challenge (both performed 7 days after treatment discontinuation). RESULTS: Amphetamine-treated rats displayed a sensitized 50-kHz USV emission during repeated treatment, as well as marked calling behavior in response to amphetamine-paired cues and to amphetamine challenge. Antagonism of D1 or D2 receptors either significantly suppressed or attenuated the emission of 50-kHz USVs in amphetamine-treated rats, with a maximal effect after synergistic antagonism of both receptors. CONCLUSIONS: These results shed further light on how dopamine transmission modulates the emission of 50-kHz USVs in rats treated with psychoactive drugs.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Anfetamina/farmacologia , Dopamina , Antagonistas de Dopamina/farmacologia , Racloprida , Ultrassom , Vocalização Animal , Estimulantes do Sistema Nervoso Central/farmacologia
13.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164591

RESUMO

Dopamine transporter (DAT) controls dopamine signaling in the brain through the reuptake of synaptically released dopamine. DAT is a target of abused psychostimulants such as amphetamine (Amph). Acute Amph administration induces transient DAT endocytosis, which, among other Amph effects on dopaminergic neurons, elevates extracellular dopamine. However, the effects of repeated Amph abuse, leading to behavioral sensitization and drug addiction, on DAT are unknown. Hence, we developed a 14 d Amph-sensitization protocol in knock-in mice expressing HA-epitope-tagged DAT (HA-DAT) and investigated the effects of Amph challenge on sensitized HA-DAT animals. The Amph challenge resulted in the highest locomotor activity on Day 14 in both sexes, which was sustained for 1 h in male but not female mice. Strikingly, significant (by 30-60%) loss of the HA-DAT protein in the striatum was caused by the Amph challenge of sensitized males but not females. Amph also reduced V max of dopamine transport in the striatal synaptosomes of males without changing K m values. Consistently, immunofluorescence microscopy revealed a significant increase of HA-DAT colocalization with the endosomal protein VPS35 only in Amph-challenged males. Amph-induced loss of striatal HA-DAT in sensitized mice was blocked by chloroquine, vacuolin-1, and inhibitor of Rho-associated kinases ROCK1/2, indicative of the involvement of endocytic trafficking in the DAT protein loss. Interestingly, an apparent degradation of HA-DAT protein was observed in the nucleus accumbens and not in the dorsal striatum. We propose that Amph challenge in sensitized mice triggers Rho-mediated endocytosis and post-endocytic trafficking of DAT in a brain-region-specific and sex-dependent manner.


Assuntos
Anfetamina , Estimulantes do Sistema Nervoso Central , Feminino , Camundongos , Masculino , Animais , Anfetamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo
14.
J Cardiovasc Pharmacol ; 83(3): 243-250, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181215

RESUMO

ABSTRACT: Amphetamine derivatives are used worldwide legally or illegally and intoxications may be accompanied by cardiac arrhythmias. Here, we tested contractile effects of cumulative applied (±)-amphetamine, pseudoephedrine, nor-pseudoephedrine (cathine), and cathinone in electrically stimulated (1 Hz) human right atrial preparations (HAP) and mouse left atrial preparations and in spontaneously beating mouse right atrial preparations. In mouse atrial preparations, amphetamine increased force of contraction and beating rate in a concentration- and time-dependent manner, starting at 1 µM in left atrial preparations to 157.1% ± 3.0% and right atrial preparations to 146.6% ± 9.8% at 10 µM, respectively [mean ± standard error of the mean (SEM); n = 5; P < 0.05]. Pseudoephedrine, cathine, or cathinone alone were ineffective in mouse atrial preparations but after pre-incubation with the phosphodiesterase IV inhibitor rolipram (0.1 µM), a positive inotropic effect was noted (mean ± SEM: pseudoephedrine: 112.3% ± 9.8%; cathine: 109.0% ± 4.3%; cathinone: 138.3% ± 21.2%). The effects of all drugs were greatly attenuated by 10 µM cocaine or 10 µM propranolol treatments. However, In HAP, not only amphetamine (to a mean ± SEM of 208% ± 32%) but also pseudoephedrine (to a mean ± SEM of 287% ± 60%), cathine (to a mean ± SEM of 234% ± 52%), and cathinone (to a mean ± SEM of 217% ± 65%) increased force of contraction without the need of phosphodiesterase inhibition. The contractile effects in HAP were attenuated by 10 µM cocaine and antagonized by 10 µM propranolol. We conclude that amphetamine, pseudoephedrine, cathine, and cathinone act probably via release of noradrenaline from cardiac stores as indirect sympathomimetic agents in mouse and more pronounced in human atrial preparations.


Assuntos
Alcaloides , Anfetamina , Cocaína , Fenilpropanolamina , Humanos , Anfetamina/farmacologia , Pseudoefedrina/farmacologia , Propranolol/farmacologia , Contração Miocárdica
15.
Psychopharmacology (Berl) ; 241(3): 445-459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010515

RESUMO

RATIONALE: Relapse into substance use is often triggered by exposure to drug-related environmental cues. The magnitude of drug seeking depends on the duration of abstinence, a phenomenon known as the incubation of drug craving. Clinical and preclinical research shows that the insular cortex is involved in substance use disorders and cue-induced drug seeking. However, the role of the insula on memory retrieval and motivational integration for cue-elicited drug seeking remains to be determined. OBJECTIVES: We investigated the role of the anterior insular cortex (aIC) and its glutamatergic projection to amygdala nuclei (aIC-AMY) on the expression of conditioned place preference (CPP) during early and late abstinence. METHODS: Male adult C57BL/6J mice underwent amphetamine-induced CPP, and their preference was tested following 1 or 14 days of abstinence. aIC and aIC-AMY functional role in CPP expression was assessed at both abstinence periods by employing optogenetic silencing and behavioral pharmacology. RESULTS: Compared to a single day, an exacerbated preference for the amphetamine-paired context was observed after 14 days of abstinence. Photoinhibition of either aIC or aIC-AMY projection reduced CPP expression following late but not early abstinence. Similarly, the antagonism of aIC NMDA receptors reduced CPP expression after 14 days of abstinence but not 1 day. CONCLUSIONS: These results suggest that aIC and its glutamatergic output to amygdala nuclei constitute critical neurobiological substrates mediating enhanced motivational cue reactivity during the incubation of amphetamine craving rather than contextual memory recall. Moreover, cortical NMDA receptor signaling may become sensitized during abstinence, ultimately modulating disproportioned drug seeking.


Assuntos
Córtex Insular , Memória , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Memória/fisiologia , Tonsila do Cerebelo , Anfetamina/farmacologia
16.
J Cereb Blood Flow Metab ; 44(3): 434-445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37882727

RESUMO

Whole-brain mapping of drug effects are needed to understand the neural underpinnings of drug-related behaviors. Amphetamine administration is associated with robust increases in striatal dopamine (DA) release. Dopaminergic terminals are, however, present across several associative brain regions, which may contribute to behavioral effects of amphetamine. Yet the assessment of DA release has been restricted to a few brain regions of interest. The present work employed positron emission tomography (PET) with [11C]raclopride to investigate regional and temporal characteristics of amphetamine-induced DA release across twenty sessions in adult female Sprague Dawley rats. Amphetamine was injected intravenously (2 mg/kg) to cause displacement of [11C]raclopride binding from DA D2-like receptors, assessed using temporally sensitive pharmacokinetic PET model (lp-ntPET). We show amphetamine-induced [11C]raclopride displacement in the basal ganglia, and no changes following saline injections. Peak occupancy was highest in nucleus accumbens, followed by caudate-putamen and globus pallidus. Importantly, significant amphetamine-induced displacement was also observed in several extrastriatal regions, and specifically in thalamus, insula, orbitofrontal cortex, and secondary somatosensory area. For these, peak occupancy occurred later and was lower as compared to the striatum. Collectively, these findings demonstrate distinct amphetamine-induced DA responses across the brain, and that [11C]raclopride-PET can be employed to detect such spatiotemporal differences.


Assuntos
Anfetamina , Dopamina , Feminino , Ratos , Animais , Anfetamina/farmacologia , Anfetamina/metabolismo , Racloprida/farmacocinética , Dopamina/metabolismo , Ratos Sprague-Dawley , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo , Corpo Estriado/metabolismo
17.
J Neurosci Res ; 102(1): e25251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37818759

RESUMO

3-Fluoroethamphetamine (3-FEA) belongs to the amphetamine class of stimulant drugs and functions as a releasing agent for the monoamine neurotransmitters norepinephrine, dopamine, and serotonin. 3-FEA acts on the central nervous system and elicits physical and mental side effects, such as euphoria, increased heart rate, and excitement. However, little is known about the withdrawal symptoms and behavioral changes induced by 3-FEA administration. This study aimed to evaluate the short-term consequences of 3-FEA administration (twice a day, 7 days, i.p.; 1 and 10 mg/kg) in C57BL/6J mice (male, 7 weeks old) at three behavioral levels following 1-4 days of withdrawal. The evaluation included (1) withdrawal score, (2) hyperactivity (open field [OF], elevated plus maze [EPM], and cliff avoidance [CA] test), and (3) depression-like behavior (forced-swim test). In the withdrawal score test, withdrawal behavior increased in all 3-FEA groups at 16 and 40 h after withdrawal. In the OF, EPM, and CA tests, the 3-FEA administration group showed significant changes in terms of hyperactivity. In addition, in the forced-swim test, both the 1 mg/kg and 10 mg/kg 3-FEA groups showed increased immobility time. These findings indicate that 3-FEA administration may lead to physical dependence, demonstrated by the withdrawal score increase and significant changes in hyperactivity and depression-like behavior following repeated administration and drug cessation. In conclusion, this study reveals the adverse consequences of 3-FEA administration and highlights the need for awareness raising and regulatory action to control the use of this new psychoactive substance.


Assuntos
Depressão , Síndrome de Abstinência a Substâncias , Camundongos , Masculino , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Camundongos Endogâmicos C57BL , Anfetamina/farmacologia , Natação , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Comportamento Animal , Ansiedade
18.
Yakugaku Zasshi ; 143(11): 883-887, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37914334

RESUMO

p-Hydroxyamphetamine (p-OHA) is an active metabolite of amphetamine (AMPH) and methamphetamine (METH), and can be detected in the brain for a relatively long period after high-dose administration of AMPH in rodents. p-OHA may be involved in the abnormal behavior observed during the withdrawal period after a chronic administration of AMPH or METH. Therefore, the author investigated the effect of an intracerebroventricular (i.c.v.) administration of p-OHA on the changes of locomotor activity and prepulse inhibition (PPI) in the acoustic startle response in rodents. The i.c.v. administration of p-OHA significantly increased locomotor activity in mice. This effect was prevented by a pretreatment with a dopamine (DA) uptake inhibitor. Furthermore, local infusion of p-OHA into the nucleus accumbens (NAc) significantly increased locomotor activity in rats. Together these results suggest that dopaminergic systems in the rodent NAc may play important roles in p-OHA-induced locomotor activity. Next, the author tested the effects of the i.c.v. administration of p-OHA on PPI in mice. p-OHA induced PPI disruptions that were significantly improved by the pretreatment with a typical or an atypical antipsychotic, D2 or D4 receptor antagonists, respectively. p-OHA-induced PPI disruptions were also improved by a serotonin (5-HT)2A receptor antagonist, a 5-HT synthesis inhibitor or a 5-HT neurotoxin. These results suggest that p-OHA-induced PPI disruptions were mediated by DA and 5-HT release and subsequent stimulation of D2, D4 and 5-HT2A receptors. Our recent series of reports indicate that the study of p-OHA may provide new insights into drug abuse as well as psychiatric disorders such as schizophrenia.


Assuntos
Dopamina , Metanfetamina , Humanos , Ratos , Camundongos , Animais , Dopamina/metabolismo , p-Hidroxianfetamina , Serotonina/metabolismo , Roedores/metabolismo , Reflexo de Sobressalto , Anfetamina/farmacologia , Transmissão Sináptica , Relação Dose-Resposta a Droga
19.
Cell Rep ; 42(11): 113365, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37924513

RESUMO

The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Neurônios Dopaminérgicos/fisiologia , Área Tegmentar Ventral/fisiologia , Córtex Insular , Anfetamina/farmacologia , Recompensa
20.
Neuroimage ; 283: 120416, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866759

RESUMO

While all reversible receptor-targeting radioligands for positron emission tomography (PET) can be displaced by competition with an antagonist at the receptor, many radiotracers show limited occupancies using agonists even at high doses. [11C]Raclopride, a D2/D3 receptor radiotracer with rapid kinetics, can identify the direction of changes in the neurotransmitter dopamine, but quantitative interpretation of the relationship between dopamine levels and radiotracer binding has proven elusive. Agonist-induced receptor desensitization and internalization, a homeostatic mechanism to downregulate neurotransmitter-mediated function, can shift radioligand-receptor binding affinity and confound PET interpretations of receptor occupancy. In this study, we compared occupancies induced by amphetamine (AMP) in drug-naive wild-type (WT) and internalization-compromised ß-arrestin-2 knockout (KO) mice using a within-scan drug infusion to modulate the kinetics of [11C]raclopride. We additionally performed studies at 3 h following AMP pretreatment, with the hypothesis that receptor internalization should markedly attenuate occupancy on the second challenge, because dopamine cannot access internalized receptors. Without prior AMP treatment, WT mice exhibited somewhat larger binding potential than KO mice but similar AMP-induced occupancy. At 3 h after AMP treatment, WT mice exhibited binding potentials that were 15 % lower than KO mice. At this time point, occupancy was preserved in KO mice but suppressed by 60 % in WT animals, consistent with a model in which most receptors contributing to binding potential in WT animals were not functional. These results demonstrate that arrestin-mediated receptor desensitization and internalization produce large effects in PET [11C]raclopride occupancy studies using agonist challenges.


Assuntos
Dopamina , Receptores de Dopamina D3 , Camundongos , Animais , Receptores de Dopamina D3/metabolismo , Racloprida/farmacologia , Racloprida/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina , Arrestina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agonistas de Dopamina/farmacologia , Anfetaminas , Anfetamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...